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10.1 INTRODUCING SHAPEWORKS

10.1.1 The Potential and the Challenge
A revolution in shape analysis is underway. While morphometrics have been important
for the study of biology and medicine for 100 years, recent advances in multivari-
ate shape representation and statistics [1–8], coupled with the increased availability of
computed tomography (CT) and magnetic resonance imaging (MRI), have enabled a
whole new generation of morphometric tools. Characterized by the use of modern
computational techniques to automatically construct detailed three-dimensional shape
representations, these new morphometrics are called Statistical Shape Modeling, and
they have the potential to measure anatomy and its variability with an unprecedented
level of precision and statistical power.

Statistical Shape Modeling (SSM) is beginning to impact a wide spectrum of basic
scientific and clinical applications, including the study of mechanisms of disease in neu-
robiology [9–11], the design of optimal patient-specific implants and bone substitutes
[12–16], reconstruction of anatomical structures from both two- and three-dimensional
medical images [9,17–27], computer-aided surgeries through pre- and postoperative
surgical planning [28–31,20,19], and reconstructive surgery [32–39]. In addition, re-
search involving large cohorts of image data, an emerging “big data” problem, is also
seeing benefit from population-level SSM to better understand disease etiology, monitor
pathology progression, and study treatment [16,40–43].

While SSM is poised to revolutionize morphometry, its widespread adoption by the
biological and medical research communities has been hindered by a lack of both effec-
tive software implementations and generic approaches that can be applied across a wide
variety of anatomies. The relative complexity of SSM algorithms makes it challenging
to engineer software implementations that are user friendly. The increased computa-
tional requirements of these approaches also make it difficult to deploy SSM algorithms
on a standard desktop computer, which is the only hardware widely available in research
labs. Thus, to maximize the scientific and clinical impact of SSM, we need approaches
that are designed to be both simple to use, from an algorithmic perspective, and that
are scalable to commodity computer hardware. Furthermore, approaches that are ro-
bust to a variety of anatomies will avoid costly development and validation of multiple
custom solutions. General approaches also support a larger user base, which leads to
more standardization and acceptance of SSM methodologies within research commu-
nities.
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10.1.2 Rising to the Challenge
It is in response to the preceding challenges that we introduce ShapeWorks. Shape-
Works is an open source software implementation of a surface correspondence approach
to SSM called Particle Based Modeling (PBM). PBM is designed to be simple to use,
robust, and applicable to general anatomy. Simplicity and generalizability are achieved
through the use of a particle system representation of shape, instead of relying on spe-
cific shape parameterizations. Correspondence points are modeling as interacting sets of
particles that redistribute themselves under an energy optimization. The optimization
finds correspondence configurations that minimize the entropy of the model, which is
a metric of information content. Thus, the optimization learns the shape parameters
that are the most efficient descriptors of the geometry of the anatomy, which increases
the robustness and statistical power of the model. This energy minimization is then
balanced by a parameter-free regularization strategy that maximizes entropy of corre-
spondence positions, in order to ensure good shape representations through efficient
surface sampling.

10.1.2.1 Particle Systems for a Flexible Shape Representation
The choice of a specific shape representation defines, and may also limit, the class of
shapes that can be modeled. To be applicable to the full range of shape analysis prob-
lems in biomedicine, a modeling methodology must be capable of representing different
topological classes of shape. A correspondence-based model that relies on spherical
parameterizations of shape, for example, can only represent manifold surfaces with
spherical topologies [44,10]. By contrast, many important structures in the body, such
as the heart, for example, consist of multiple interconnected chambers, with shared
boundaries and open surfaces. The boundaries of other structures may be somewhat
arbitrarily defined by specific landmarks or regions of interest. Many problems in or-
thopedics, for example, are concerned only with variability in specific areas of bone or
the interaction of bone and cartilage surfaces at joints. In short, human anatomy can
be very complex, and the simplifying assumptions of parametric models may even lead
to erroneous or misleading results. Another important consideration is that medical or
biological shapes are typically derived from the interfaces between organs or tissue types
and usually defined implicitly in the form of segmented volumes, rather than explicit
parameterizations, triangulations, or surface point samples. Such representations there-
fore require additional preprocessing steps that may limit the fidelity of the model and
introduce error, especially as hypotheses regarding shape become more complex.

Instead of a parametric shape representation, PBM uses the idea of the particle sys-
tem surface representation first proposed by Witkin and Heckbert, who introduced the
idea of modeling a point set as a system of interacting particles that are constrained to
lie on an implicit surface. Particles interact with one another with mutually repelling
forces, such as electrostatic charge, so that they find distributions that optimally cover,
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Figure 10.1 Femur shape representation using increasing numbers of particles.

and therefore describe, the surface geometry [45]. Meyer et al. proposed numerically
robust extensions to this approach, including a new class of radial-basis energy functions
and methods for curvature-adaptive surface sampling [46]. PBM adapts the numeri-
cal approaches of Meyer et al. for correspondence models by using a set of interacting
particle systems, one for each shape in the sample, to produce optimal sets of surface
correspondences. Adopting a point-based surface representation avoids many of the lim-
itations and complexities inherent in parametric representations, such as the limitation
to specific topologies and processing steps necessary to construct parameterizations. An-
other advantage is that, unlike representations that rely on surface meshes, particles do
not have fixed neighbors and are free to move past one another to form different neigh-
borhood configurations during the optimization process. This property means that the
result is less constrained by the initialization and can potentially produce a less biased,
more fully optimized model.

Fig. 10.1 illustrates the concept of a particle system representation of an implicit
surface on a femur bone shape. The panels from left to right show an increasing number
of particles placed on the surface and the resulting surface reconstruction from the
particles. The surface reconstruction is done using the method for unorganized sets of
points given by Hoppe et al. [47]. The number of particles doubles in each panel (256,
512, and 1024). As the particle count increases, so does the detail of the corresponding
surface reconstruction.

10.1.2.2 Optimized Correspondences Address the Model Selection Problem
Correspondences offer a flexible shape representation and are intuitively the compu-
tational extension of traditional landmark models. However, the problem of how to
automatically choose correspondence positions is difficult and ill-posed because of the
fact that there are potentially an infinite number of possible configurations that can be
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chosen for the correspondences on the shapes in the sample set. Thus, an important
advance in SSM technology is the idea of choosing correspondence positions based on
the minimization of an energy function of their positions (or associated features). Such
optimized correspondence models are motivated by the Occam’s razor principle of par-
simony: given a number of possible models for the data, choose the simplest model. This
idea has historically been widely applied to model selection problems in statistics, in or-
der to find models with minimal numbers of parameters and greater predictive power
[48]. The idea of an optimized correspondence model of shape was first proposed by
Kotcheff and Taylor, who developed an algorithm that minimizes the magnitude of the
covariance of the correspondences. Davies, Cootes and Taylor later expanded on this
idea, using an information-theoretic cost function of correspondence positions based
on minimum description length (MDL) [49,50]. The PBM approach to optimized
correspondence uses a minimization based on entropy, which is a related measure to
minimum description length, in that it seeks to minimize information content of the
model.

A major consideration in the optimization process is to avoid overfitting to the data.
If correspondence placement is completely unconstrained, for example, the optimal so-
lution with respect to the information content is to place all correspondences as close
to one another as possible. For this reason, optimized SSM approaches usually incor-
porate a constraint that ensures that correspondences faithfully represent the geometries
of the samples. Several regularization strategies in the basic MDL formulation have
been proposed that entail additional free parameters and assumptions about the qual-
ity of the initial parameterizations. One strategy, for example, constrains the solution
so that it remains close to an anchor shape [50]. Such approaches, however, artificially
limit the minimization process and bias the solution toward the anchor shape. To avoid
assumptions about the initial quality of sample surface representations and ad-hoc regu-
larizations, the PBM algorithm instead explicitly constructs good shape representations
during the optimization procedure by maximizing an entropy measure on their distri-
butions.

10.1.3 ShapeWorks: An Open-Source Implementation of PBM
Developed at the University of Utah, the underlying methods and theory of PBM have
been described in a series of papers over the last 10 years [51–55]. The scientific and
clinical effectiveness of ShapeWorks has been demonstrated in a range of applications in-
cluding neuroscience [53,56–59], biological phenotyping [60,61], orthopedics [61–63]
and cardiology [64,65]. The ShapeWorks software itself consists both a flexible C++
code library for the PBM optimization and an evolving suite of software applications
that implement workflows for applying PBM to image data. The latter includes com-
mand line executables suitable for batch processing large cohorts of image data, as well
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as desktop applications that support the complete shape analysis workflow, from prepro-
cessing of image segmentations to analysis and visualization of PBM shape models.

The remainder of this chapter describes the theory and implementation of Shape-
Works, starting with the mathematical formulation and numerical implementation of
the PBM algorithm and its extensions (Sections 10.2–10.3). Following the PBM devel-
opment, we describe the ShapeWorks code distribution, which includes a C++ library
of PBM code, and the workflow that is implemented in the ShapeWorks software ap-
plications (Section 10.4). Finally, we describe some scientific and clinical applications
of ShapeWorks (Section 10.5) and conclude with a brief discussion of future work and
ShapeWorks developments (Sections 10.6).

10.2 PARTICLE-BASED MODELING

10.2.1 Overview
The Particle Based Modeling (PBM) approach to SSM constructs a correspondence-
point model of shape, which describes shape variation by choosing a discrete set of
corresponding points on shape surfaces whose relative positions can be statistically an-
alyzed. The correspondence model is analogous to a dense landmark model and is
defined as follows. Consider a statistical sample of N surface representations drawn from
a population of surfaces. The surface representations are embedded in a d-dimensional
Cartesian space (typically, d = 2 or d = 3). A model for shape variation is constructed
by choosing a set of M , d-dimensional points on each of the N surfaces. Each of the
points is called a correspondence point. Collectively, the set of M points is known as
the configuration, after Dryden and Mardia [5], and the space of all possible config-
urations is the configuration space. The configuration matrix, C, is the M × d matrix of
Cartesian coordinates in a configuration. The ordering of the points in the N con-
figurations and, equivalently, the rows in the configuration matrices explicitly define
the correspondences among the surfaces. Row k <= M in configuration matrix i,
for example, corresponds to row k in configuration matrix j. The variation of the
positional information encoded in the rows of the configuration matrices describe ge-
ometric variation in shape. Each configuration can be mapped to a single point X in
a d × M-dimensional shape space by concatenating the correspondence coordinate posi-
tions into a single vector. The mapping to the dual shape space is invertible. The sample
set forms a distribution in shape space, whose statistical properties can be estimated.

The PBM algorithm models the correspondence positions as sets of dynamic par-
ticles that are constrained to lie on the surface of the sample set, as in the surface
sampling methods described in Section 10.1.2.1. The optimization is based on the idea
of treating correspondence position in configuration space as a random variable, while
simultaneously treating correspondence configuration as a random variable. Correspon-
dence positions are optimized by gradient descent on an energy function that balances



ShapeWorks 263

the negative entropy of the distribution of particles in configuration space with the pos-
itive entropy of the distribution of the configurations in shape space. The method is to
consider zk ∈ ℜdM ,k = {1,2, . . . ,N} both as observations on a dM × 1 vector random
variable Z and as N samples of M observations on N ,d×1 vector random variables Xk.
The optimization to establish correspondence minimizes the energy function

Q = H(Z) −
N∑

k=1

H(Xk), (10.1)

where H is an estimation of differential entropy. Minimization of the first term in Q
produces a compact distribution of samples in shape space, while the second term seeks
uniformly-distributed correspondence positions on the shape surfaces for accurate shape
representation. Each term is given in commensurate units of entropy, avoiding the need
for a separate regularization strategy. Because correspondence points in this formulation
are not tied to a specific parameterization, the method operates directly on volumetric
data and extends easily to arbitrary shapes, even nonmanifold surfaces.

10.2.2 Surface Representation
Consider a single configuration for a shape surface S ⊂ ℜd. The configuration consists
of a discrete set of M points, which are the correspondence positions. The PBM formu-
lation represents these positions with a set of particles, whose positions are considered
a sample on a vector random variable X ∈ ℜd, with an associated probability density
function describing their distribution. This probability density function p(X = x) gives
the probability of an observation x on X, denoted as p(x). In the limit, the amount of
information contained in the sample on X is the differential entropy of p(X),

H(X) = −
∫

S
p(X) log p(X)dx = −E{log p(X)}, (10.2)

where E{·} is the expectation. When there are a sufficient number of points sampled
from p, the expectation can be approximated by the sample mean [66], which gives

H(X) ≈ − 1
M

M∑

i=1

log p(xi). (10.3)

The PBM algorithm manipulates particle positions using a gradient-descent opti-
mization on a cost function C, that is an approximation of negative entropy,

C(x1, . . . ,xM ) ≈ −H(X). (10.4)
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The optimization problem is given by

z = arg min
z

C(x1, . . . ,xM ) s.t. x1, . . . ,xM ∈ S, (10.5)

and uses a Gauss–Seidel update with forward differences. Each particle therefore moves
with a time parameter and positional update,

xi ← xi − γ
∂C
∂xi

, (10.6)

where γ is a time step. The partial gradient of C for particle i is

∂C
∂xi

= ∂

∂xi

1
M

M∑

j=1

log p(xj) = 1
M

M∑

j=1

∂
∂xi

p(xj)

p(xj)
. (10.7)

The gradient requires estimates of the probability p(X = xj). For distributions of parti-
cles on surfaces, a probability density function may be quite complex, which suggests a
nonparametric, kernel-based approach. The PBM algorithm uses a Parzen windowing
density estimation [67] that is based on the particle configurations. The probability of
the position of a particle in this formulation is given by the mixture of multivariate
Gaussian kernels,

p(x,σ ) ≈ 1
M

M∑

j=1

G(x − xj,σ ), (10.8)

where G(x − xj,σ ) is a d-dimensional, isotropic Gaussian with standard deviation σ .
When j = i in (10.7), the partial derivative of p with respect to particle position is

∂

∂xi
p(xi,σi) = 1

σ 2
i M

M∑

j=1

G(xi − xj,σi)(xi − xj). (10.9)

When i ≠ j, the derivative is

∂

∂xi
p(xj,σj) = 1

M

[
∂

∂xi
G(xj − x1,σj) + ∂

∂xi
G(xj − x2,σj) + . . .

+ ∂

∂xi
G(xj − xi,σj) + · · · + ∂

∂xi
G(xj − xM ,σj)

]

= 1
M

[
0 + 0 + · · · − σ−2

j G(xi − xj,σj)(xi − xj) + · · · + 0
]

= 1
σ 2

j M
G(xj − xi,σj)(xi − xj).

(10.10)
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Substituting (10.9) and (10.10) into (10.7) gives

∂C
∂xi

= 1
M

M∑

j=1

G(xi − xj,σi)(xi − xj)

σ 2
i p(xi,σi)

+ 1
M

M∑

j=1

G(xj − xi,σj)(xi − xj)

σ 2
j p(xj,σj)

. (10.11)

The computational complexity for Eq. (10.11) is O(M2), since the entire density
function p must be recomputed for each particle update. To simplify the computation,
the PBM formulation instead considers p to be fixed for a given particle update: for
j ≠ i in (10.11), the estimation of the density function at j is allowed to lag behind the
update of particle position i. Under this assumption, ∂

∂xi
p(xj,σj) = 0, and the second

term in (10.11) drops out, simplifying the gradient computation to only O(M).
After dropping the second term, the final approximation to the gradient of particle

positional entropy is given by

∂C
∂xi

≈ 1
M

M∑

j=1

G(xi − xj,σi)(xi − xj)

σ 2
i p(xi,σi)

= 1
M

M∑

j=1

G(xi − xj,σi)

σ 2
i

1
M

∑M
k=1 G(xi − xk,σi)

(xi − xj)

= 1
M

M∑

j=1

wij(xi − xj),

(10.12)

where wij are Gaussian weights based on interparticle distance and
∑

j wij = 1. To mini-
mize C, the particles must move away from each other. Thus, we have a set of particles
moving under a repulsive force and constrained to lie on the surface, with γ < σ 2

in (10.6) for stability. The motion of each particle is away from all of the other particles,
but interactions are effectively local for sufficiently small σ , where wij vanishes with
increasing interparticle distance.

10.2.3 Adaptive Distributions on Surface Features
The preceding minimization produces a uniform sampling of a surface. For some appli-
cations, a strategy that samples adaptively in response to higher order shape information
is more effective for several reasons. From a numerical point of view, the minimization
strategy relies on a degree of regularity in the tangent planes between adjacent particles,
which argues for sampling more densely in high curvature regions. An adaptive sampling
strategy also produces a more efficient representation of geometric detail by reducing
redundant samples in flatter regions. Adaptive sampling with PBM is implemented by
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modifying the Parzen windowing in Eq. (10.8) as follows:

p̃(xi) ≈ 1
M

M∑

j=1,j≠i

G
(

xi − xj

kj
,σi

)
(10.13)

where kj is a scaling term proportional to the curvature magnitude computed at each
neighbor particle j. The effect of this scaling is to expand space in response to local cur-
vature. A uniform sampling based on maximum entropy in the warped space translates
into an adaptive sampling in unwarped space, where points pack more densely in higher
curvature regions. The extension of Eq. (10.12) to incorporate the curvature-adaptive
Parzen windowing is straightforward to compute. Since kj is not a function of xi, the
modified gradient is

∂C
∂xi

≈ 1
M

M∑

j=1

G((xi − xj)/kj,σi)(xi − xj)

σ 2
i kjp(xi,σi)

. (10.14)

There are many possible choices for the scaling term k. Meyer et al. [68] describe an
adaptive surface sampling that uses the scaling

ki =
1 + ρκi(

s
2π

)
1
2 s cos(π/6)

, (10.15)

where κi is the root sum-of-squares of the principal curvatures at surface location xi.
The user-defined variables s and ρ specify the ideal distance between particles on a
planar surface and the ideal density of particles per unit angle on a curved surface,
respectively. Note that the scaling term in this formulation could easily be modified to
include surface properties other than curvature.

10.2.4 Surface Constraint
The surface constraint in both the uniform and adaptive optimizations is specified by the
zero set of a scalar function F(x). This constraint is maintained, as described in several
papers [46], by projecting the gradient of the cost function onto the tangent plane of the
surface, as prescribed by the method of Lagrange multipliers. The projection operator
is given by

I − n ⊗ n, (10.16)

where I is the identity matrix, n is the normal to the surface, and ⊗ denotes the outer,
or tensor, product. The tangent-plane projection is followed by iterative reprojection
of the particle onto the nearest root of F by the Newton–Raphson method. Principal
curvatures are computed analytically from the implicit function, as described in [69].
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10.2.5 The Kernel Width σ for PDF Estimation
Finally, the kernel width σ of the Parzen windowing estimation of particle density must
be chosen at each particle. This is done automatically, before the positional update,
using a maximum likelihood optimality criterion. The contribution to C of the ith
particle is simply the probability of that particle position. Optimizing that quantity with
respect to σ therefore gives a maximum likelihood estimate of σ for the current particle
configuration. Using the Newton–Raphson method, the strategy is to find σ such that

∂p(x,σ )/∂σ = 0, (10.17)

which typically converges to machine precision in several iterations. For the adaptive
sampling case, we find σ such that

∂ p̃(x,σ )/∂σ = 0, (10.18)

so that the optimal σ is scaled locally based on the curvature. The iteration is given by

σ t+1 ← σ t +
∂p
∂σ

∂2p
∂σ 2

, (10.19)

and the first derivative of p with respect to σ , from (10.8), is

∂

∂σ

M∑

j=1

1
M

G(x − xj,σ ) = ∂

∂σ

M∑

j=1

1
M(2π)d/2σ d e

−rj
2σ2

= 1
M(2π)d/2σ d+3

M∑

j=1

e
−rj
2σ2 (rj − dσ 2),

(10.20)

where rj = (x − xj)
T (x − xj) is the distance from x to xj. The second derivative follows

from (10.20), and is given by

∂2

∂σ 2

M∑

j=1

1
M

G(x − xj,σ ) = 1
M(2π)d/2σ d+6

×

⎡

⎣
M∑

j=1

e
−rj
2σ2 (r2

j − (3 + 2d)σ 2rj + d(1 + d)σ 4)

⎤

⎦ . (10.21)

10.2.6 Numerical Considerations
There are a few important numerical considerations in computing the particle-based
surface representation. First, the Gaussian kernels must be truncated. Typically, we trun-
cate kernels so that G(x,σ ) = 0 for |x| > 3σ . This means that each particle has a finite
radius of influence, and a spatial binning structure to identify neighboring particles can
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be used to reduce the computational burden associated with particle interactions. A sec-
ond consideration is the case where σ for a particle is too small to allow the particle to
interact with its neighbors, and updates of σ or position cannot be computed. When σ

is small, kernel size is updated using σ ← 2 × σ , until σ is large enough for the particle
to interact with its neighbors. A final numerical consideration is that the system must
include bounds σmin and σmax to account for anomalies such as bad initial conditions or
too few particles. These are not critical parameters, and as long as they are set to include
the minimum and maximum resolutions, the system operates reliably.

One final aspect of the particle formulation to consider is that it computes the Eu-
clidean distance between particles, rather than the geodesic distance on the surface. The
PBM algorithm therefore assumes sufficiently dense samples so that nearby particles lie
in the tangent planes of the zero sets of F. This is an important consideration; in cases
where this assumption is not valid, such as highly convoluted surfaces, the distribution
of particles may be affected by neighbors that are outside of the true manifold neigh-
borhood. Limiting the influence of neighbors whose normals differ by some threshold
value (e.g., 90 degrees) does limit these effects.

10.2.7 Correspondence: Entropy Minimization in Shape Space
A sample set, E , is a collection of N surfaces, each with their own set of M particles
mapped to a single, dM-dimensional vector in shape space, i.e. E = z1, . . . ,zN . The
sample set in vector form may be collected into a single matrix P = zk

j , with particle
positions along the rows and shape samples across the columns. Modeling zk ∈ ℜdM as
an instance of random variable Z, the PBM method for correspondence minimizes the
combined sample and shape cost function

Q = H(Z) −
N∑

k=1

H(Xk), (10.22)

which favors a compact representation of the sample, and is balanced against a uniform
distribution of particles on each surface.

For this discussion we assume that the complexity of each shape is greater than
the number of samples, and so normally dM > N . Given the low number of exam-
ples relative to the dimensionality of the space, the density estimation requires some
assumptions. The PBM algorithm therefore assumes a normal distribution and models
p(Z = z) parametrically using an anisotropic Gaussian with covariance !. The entropy
is then given by

H(Z) ≈ 1
2

log |!| = 1
2

dM∑

j=1

logλj, (10.23)

where ek,λk, j = 1, . . . ,dM are the eigenvalues of !.
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In practice, ! will not have full rank, in which case the entropy is not finite. The
problem must therefore be regularized with the addition of a diagonal matrix αI to
introduce a lower bound on the eigenvalues. The covariance is estimated from the data,
and is given by

! = (dMN − 1)−1YYT , (10.24)

where

yk = zk − µ, and µ = 1
N

N∑

k=1

zk. (10.25)

Thus, Y denotes the matrix of sample vectors P minus the sample mean µ, i.e. Y = P−
µ1T , where 1 is a dM × 1 vector of ones. Because N < dM , the eigenanalysis in (10.23)
is done on the dual space of the N ×N covariance matrix !T = (dMN −1)−1YTY. The
nonzero eigenvalues of ! can be obtained from !T by noting the following relationships
(see also [50]). For eigenvalues and eigenvectors {ek,λk} of !, !ek = λkek. Similarly, for
eigenvalues and eigenvectors {e′

k,λ
′
k} of !T , !Te′

k = λ′
ke′

k. Substituting for !T , we
have

(dMN − 1)−1YTYe′
k = λ′

ke′
k, (10.26)

and premultiplying each side by P gives

(dMN − 1)−1YYTYe′
k = λ′

kYe′
k, (10.27)

which is equivalent to

!(Ye′
k) = λ′

k(Ye′
k). (10.28)

Thus, ek = Ye′
k, and λk = λ′

k, for nonzero eigenvectors of #. The covariances |!| and
|!T | are therefore equivalent (up to a constant factor of α), and the final cost function
G associated with the sample entropy is given by

G(P) = 1
2

log |!| = 1
2

log
∣∣∣∣

1
dMN − 1

YTY + αI
∣∣∣∣ . (10.29)

To compute the gradient of G, we follow a logic similar to that used in the derivation
of (10.11), and allow the estimation of the mean µ of the distribution Z to lag behind
the updates ∂G

∂P . This allows for the simplifying assumption ∂G
∂P ≈ ∂G

∂Y . This approximation
becomes more accurate as the number of shape samples is increased, and changes in
individual particle positions have increasingly less of an effect on the sample mean. The
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matrix of partial derivatives of G with respect to Y is derived as follows.

∂G
∂Y

= ∂

∂Y

(
1
2

log
1

(dMN − 1)n + 1
2

log
∣∣YTY

∣∣
)

= 0 + 1
2

∣∣YTY
∣∣−1 ∂

∂Y
∣∣YTY

∣∣

=
∣∣YTY

∣∣−1 ∣∣YTY
∣∣Y(YTY)−1

= Y(YTY)−1.

(10.30)

Adding the regularization to the covariance, we have the following equation for the
updates

∂G
∂P

≈ Y(YTY + αI)−1. (10.31)

The regularization α on the inverse of YTY can now be seen to account for the pos-
sibility of a diminishing determinant. The negative gradient −∂G/∂P gives a vector of
updates for the entire system, which is recomputed once per system update. This term
is added to the shape-based updates described in the previous section to give the update
of each particle:

zk
j ← γ

[
−∂G/∂zk

j + ∂Ek/∂zk
j

]
. (10.32)

The stability of this update places an additional restriction on the time steps, requiring
γ to be less than the reciprocal of the maximum eigenvalue of (YTY + αI)−1, which is
bounded by α. Thus, we have γ < α and note that α has the practical effect of preventing
the system from slowing too much as it tries to reduce the thinnest dimensions of
the sample distribution. This also suggests an annealing approach for computational
efficiency in which α starts off somewhat large (e.g., the size of the shapes) and is
incrementally reduced as the system iterates.

10.2.8 Setting Parameters
The SSM approach described thus far is a self-tuning system of particles that distribute
themselves across the shape surface using repulsive forces to achieve optimal distribu-
tions. Particles may also optionally adjust their sampling frequency locally in response
to surface curvature. Free parameters of the system are limited to the choice of the
number of particles (M ), and the parameters s and ρ from (10.15), if adaptive sampling
is used. In practice, adaptivity parameters are typically determined empirically based on
the data under analysis. The number of particles is also typically chosen empirically by
adding particles until the representation is deemed to capture enough details for the
given application.
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Figure 10.2 PBM correspondences on example tori from a random distribution on r and R. Colors indi-
cate correspondence. (For interpretation of the references to color in this figure, the reader is referred
to the web version of this chapter.)

In order to explicitly manage the tradeoff between model compactness and the geo-
metric regularization, an additional free parameter β may be introduced into Eq. (10.1)
as follows:

Q = H(Z) − β

N∑

k=1

H(Xk). (10.33)

Empirical results, however, suggest that the two terms in this function are already well
balanced and β = 1 represents a good default setting.

10.2.9 Illustration of the Properties and Interpretability of the PBM
Optimization

Finally, we present two examples that illustrate the properties of the optimization. The
first is an experiment on a class of nonspherical shapes, for which the PBM optimization
recovers the optimal ground truth shape parameters. The second example illustrates
how PBM is able to discover the underlying mode of variation in a box ensemble with
a moving bump in comparison to diffeomorphism-based shape modeling.

To illustrate PBM optimization results for ground truth synthetic data, we applied
the algorithm to sample set of 40 randomly generated tori, which are nonspherical
shapes that can be described by exactly two shape parameters, a small radius r and the
large radius R (see also the example given in Fig. 10.3). Tori were randomly chosen
from a distribution with mean r = 1,R = 2 and σr = 0.30,σR = 0.15. A rejection policy
was used to exclude invalid tori (e.g., r > R). Correspondences were optimized using
1024 particles per shape, and a uniform sampling (no adaptivity). Fig. 10.2 shows the
particle system distribution across several of the torus shapes in the sample set with 1024
correspondences. Correspondence positions are indicated by spherical glyphs and cor-
respondence across shapes is indicated by the color of the glyph. Surface reconstructions
for each sample were done using the correspondence positions and the algorithm given
by Hoppe et al. for collections of unorganized points [47]. A principal component anal-
ysis (PCA) of the resulting correspondence positions indicates that the particle system
method discovered two pure modes of variation. PCA mode 1 contains 69.7870% of
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Figure 10.3 PCA modes 1 and 2 illustrated for the PBM torus shape model at −3 to +3 standard devia-
tions from the mean shape. PCA 1 (top row) corresponds to r and PCA 2 (bottom row) correspondence
to R.

total variation and PCA mode 2 contains 30.2076% of total variation. Less than 0.006%
of total variation remains in the smaller, “error” modes.

Empirical observation of PCA modes 1 and 2 suggests that they correspond well to
variation in r and R, respectively, from the parametric model that was used to generate
the sample data. Fig. 10.3 shows the mean correspondence positions from the model
moved along each of the top two PCA modes. Torus shapes along each mode are
reconstructed from the learned PBM model parameters at −3 to +3 standard deviations
from the mean. The top row illustrates variation in PCA 1, which corresponds to r,
and the bottom row indicates variation in PCA 2, which corresponds to R. In this
experiment, the PBM method appears to have estimated the true orthogonal modes of
variation of the torus shape sample.

In the second experiment, we constructed an ensemble of 15 three-dimensional
“box-bump” shapes with a bump at a varying location (see top row of Fig. 10.4). Each
shape was constructed as a fast-marching distance transform of a union of a rounded-
corner cuboid and an ellipsoid representing a bump added at a random location along
the top side of the cuboid. This example is interesting because we would, in principle,
expect a correspondence algorithm that is minimizing information content to discover
this single mode of variability in the sample set. We used the PBM method to opti-
mize 1024 particles per shape under uniform sampling on the “box-bump” shapes (see
middle row of Fig. 10.4).

As opposed to optimized correspondences on shape surfaces, the shape geometry
can be embedded in the image intensity values at pixels or voxels and then nonlinear
registration can be used to map all sample images to a reference image, or atlas. The
variation in shape is then considered to be captured by the nonlinear registration pa-
rameters. Of the image registration methods, the diffeomorphic methods are in most
widespread use. Hence, it is important to show whether modeling shape variations using
diffeomorphic warps are able to recover the known mode of variation (i.e., a moving
bump) as compared to the analysis of the optimized correspondence model. In this
regard, we generated an unbiased atlas of the “box-bump” ensemble as proposed in
[70] and implemented in AtlasWerks [71]. We then constructed a parametric statistical
model of shape variation using PCA on the deformation fields that map each box-bump
sample to the estimated unbiased atlas (see bottom row of Fig. 10.4).
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Figure 10.4 The box-bump experiment: PBM-based and diffeomorphic-based shape models.

Fig. 10.4 illustrates the mean and three standard deviations of the first mode of the
PBM- and diffeomorphic-based models. Shapes from the particle method remain more
faithful to those described by the original training set, even out to three standard devia-
tions where the diffeomorphic description breaks down. In particular, one can observe
that PCA identified a single dominant mode of variation for the PBM method (see mid-
dle row of Fig. 10.4). However, diffeomorphic warps recovered incorrect shape model
in which the mean shape showed a box with two bumps rather than a single bump and
the first mode of variation represented the relative height of the two “artificial” bumps.
Further, diffeomorphic-based shape modeling showed five dominants shape modes in
an ensemble of a single mode.

10.3 PBM EXTENSIONS
This section describes several mathematical extensions of the particle-based modeling
(PBM) algorithm that are designed to make it more robust to realistically complex shape
analysis problems. This work is motivated by the needs of the biomedical research com-
munity for tools to model more complicated anatomical shapes and statistical designs,
such as joint variability of multiple structures and optimization with respect to ex-
planatory variables. Cardiac anatomy, for example, consists of multiple interconnected
chambers with shared openings, valve annuli, and septa. In orthopedics, researchers are
often concerned with the mechanical interactions of multiple bone surfaces, in order to
understand dysfunction in joints. In other cases, the geometric features of an anatomical
object are not sufficient to properly establish correspondence. Some anatomy is highly
variable across subjects and additional information, such as functional data, is helpful in
determining how surface regions correspond. The cortical surface of the brain repre-
sents one such example. Cortical folding patterns are highly variable among individuals,
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and neuroanatomists typically rely on information such as sulcal depth and vascular
connectivity for correspondence, rather than geometric information alone.

Extensions to the PBM algorithm that are developed in this section include the
following. Section 10.3.1 describes an approach for modeling surface with open bound-
aries. The open surface method allows an arbitrary boundary to be defined as the
intersection of a closed surface with a set of shape primitives. Section 10.3.2 describes
how the PBM algorithm can be used to optimize the joint correspondence among
shapes that consist of multiple anatomical objects. This capability is important in the
study of shape covariance among anatomy that is functionally or structurally correlated.
Section 10.3.3 describes a generalization of the PBM optimization criteria to corre-
spondence in arbitrary, multivariate functions of position, rather than only considering
positional information. This approach is useful for problems where there is data other
than geometric information that indicates correspondence, such as multimodal imag-
ing studies, and studies with functional imaging data. Finally, Section 10.3.4 describes a
methodology for including a regression model on independent variables into the PBM
correspondence optimization. Shape regression modeling can improve statistical power
when controlling for correlations between shape and factors such as age or other clinical
variables.

10.3.1 Modeling Shape with Open Surfaces
Conceptually, there are two ways to handle a surface boundary when optimizing cor-
respondences. The first approach is to explicitly represent and model the boundary,
which requires that correspondences must be allowed to lie on the boundary, and the
optimization must track particle movement on and off of the boundary. This approach
is appropriate for applications where the boundary shape is of specific interest to the
problem, such as specifically modeling the shapes of valve annuli or the ostia of vascular
openings in conjunction with chamber shape in the heart. In many cases, however, it is
not important, or even desirable, to model the variation in the shape of the boundary.
A segmentation, for example, may contain noise in the boundary shape due to ambi-
guities in its specification during the segmentation process. Such examples often arise
in orthopedics, for example, where only the proximal or distal end of a bone may be
of interest. In this situation, where the boundary is considered noisy, it can simply be
treated as a constraint on the particle optimization, which is the approach currently
implemented for ShapeWorks. Explicit modeling of open shape boundaries is left for
future work.

The PBM algorithm for correspondence on open surfaces represents the surface
boundary as the intersection of a closed surface (e.g., S in Section 10.2.2) with a set of
geometric primitives, such as cutting planes and spheres. The boundary representation is
then used to influence the entropy maximization of the PBM algorithm particle position
(Section 10.2.2), so that it indirectly constrains the positions of particles to lie within
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Figure 10.5 Increasing numbers of PBM particles on an open surface, where the boundary is defined
by the intersection of an implicit bone surface with a sphere and a cutting plane.

the surface boundary. The goal of the open surface modeling algorithm is to formulate
particle interactions with the boundaries so that the positions of the constraints have
as little influence as possible on the statistical shape model. This approach is consistent
with the idea that the boundary shape may contain noise, and we wish to minimize the
influence of this noise on the model.

The algorithm proceeds as follows. For each geometric primitive in the surface
boundary representation, the algorithm constructs a virtual particle distribution that
consists of all of the closest points on its surface to the particles with positions xj on S.
During the gradient descent optimization, particles xj interact with the virtual particles,
and are therefore effectively repelled from the geometric primitives, and thus from the
open surface boundary. The virtual distributions are updated after each iteration, as
the particles on S redistribute under the optimization. Because the virtual particles are
allowed to factor into the Parzen windowing kernel size estimation (Eq. (10.8)), particles
xi maintain a distance from the boundary proportional to their density on the surface S.
In this way, features near the boundary may be sampled, but particles are never allowed
to lie on the boundary itself, limiting the effect of errors in the boundary specification
on the configuration. Note that the virtual particle distributions are also not used in the
correspondence optimization term (the sample entropy from Eq. (10.23)) and therefore
do not directly affect the distribution of samples in shape space.

Fig. 10.5 illustrates a particle configuration using the method outlined above for
open surfaces, and shows the effect of increasing the number of particles. In the figure,
the open surface boundary is defined by the intersection of an implicit bone surface,
a cutting plane, and a sphere. As the number of particles is increased, the distribution
samples regions of the bone become closer and closer to the surface boundary. Note,
however, that the particle distribution never touches or crosses the boundaries.

Further examples are given in Fig. 10.6. Fig. 10.6A illustrates placement of particles
on a neonatal head surface (from MRI), with a cutting plane defined by anatomical
landmarks at the tip of the nose and the center of the ears, and spheres placed at those
same landmarks to exclude both nose and ears from the analysis. This approach was used
in work characterizing shape change during neonatal head development [60]. Another
example is that of the left atrium, which is shown in Fig. 10.6B. The left atrium is
a complex structure with openings to the mitral valve and the pulmonary veins. For
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Figure 10.6 Examples of PBM optimization on open surfaces, including pediatric head shape (A) and
the left atrium (B).

studies involving left atrial shape in atrial fibrillation [64], we masked out the mitral
valve region using a collection of exclusion spheres.

10.3.2 Modeling Shape Complexes
In general, biological function and phenotype is not explained by any single anatomical
structure, but are instead the result of complex systems of functionally- or structurally-
related anatomy. This section presents an extension of the PBM algorithm for shape
modeling of multiple, disconnected anatomical surfaces, or what we will call shape
complexes. A multiobject complex is defined as a set of solid shapes, each representing
a single, connected biological structure. The complex of structures are assembled into
a scene within a common coordinate frame. Each structure in a multiobject complex
contains shape, pose, scale, and positional information. Some examples include the seg-
mentations of multiple brain structures from a single MRI of a patient and sets of bones
segmented from a CT scan. The proposed correspondence method for establishing cor-
respondence on multiobject complexes is novel in that it optimizes correspondence
positions in the full, joint shape space of the object complex. Researchers have previ-
ously only considered the correspondence problem separately for each structure, thus
ignoring the interstructural shape correlations in the optimization process. By explicitly
modeling the correlations among variabilities, however, optimization in the joint space
may produce more compact distributions for correspondences, resulting in fewer model
parameters and greater statistical power.

The particle-based correspondence method described in Section 10.2 can be di-
rectly applied to multiobject complexes by treating all of the objects in the complex
as defining a single surface. However, if the objects themselves have distinct identities
(i.e., object-level correspondence is known a priori), we can assign each particle to a
specific object, decouple the spatial interactions between particles on different shapes,
and constrain each particle to its associated object. In this way, each correspondence
is guaranteed to stay on a particular anatomical structure, and the surface sampling is
not influenced by regions where structures in the complex happen to be near to one
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another. The shape-space statistics using this method, however, remain coupled, and the
covariance ! (Eq. (10.23)) includes all particle positions across the entire complex, so
that optimization takes place on the joint, multiobject model.

As with the single-object framework, any set of implicitly defined surfaces is appro-
priate as input to the multiobject framework, with similar preprocessing considerations
as those discussed in Section 10.4.1. In the case of binary segmentations, the input is
now a set of N segmentations of K-object complexes, which contains N × K distinct,
volumetric label masks.

10.3.3 Correspondence Based on Functions of Position
Geometric features of an anatomical object are often not sufficient to properly establish
correspondence. The basic PBM algorithm described in Section 10.2 only considers
particle position information in the optimization, which only represents the geometric,
or structural, information of the shape surface. Here we describe an extension to the
PBM algorithm to establish correspondence by minimization of the entropy of arbitrary,
vector-valued functions of position. This more general method is useful in cases where
the notion of correspondence is not well defined by the surface geometry, but can be
described by other metrics.

The extension to the PBM algorithm to incorporate functional data, which we refer
to as the generalized PBM algorithm, is straightforward. It consists of substituting the
entropy estimation of the matrix of particle positions with an entropy estimation on an
arbitrary, vector-valued function of the particle position. From Section 10.2, the energy
term for the basic PBM optimization is given by

Q = H(Z) − β

N∑

k=1

H(Xk), (10.34)

where H is an estimation of entropy, Xk is a vector random variable with the distribution
of particle configuration k, and Z is the vector random variable with the distribution
of the shape samples in the dM-dimensional shape space. The extension to the gen-
eralized PBM algorithm only modifies the correspondence term H(Z). The entropy
associated with individual correspondence configurations, H(Xk), is not modified, and
still operates on positional information. In other words, particles are still constrained
to lie on the surface of the shape and distribute themselves across shape surfaces using
the maximization of positional entropy, but their correspondence is established using a
function of positional information. Note that a function of position could be designed
to also include particle position, so that both structural and functional data influence
the correspondences.
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Recall from Section 10.2.7, that the entropy estimation of the sample distribution
in shape space is given by

H(Z) ≈ 1
2

log |!|, and ! = (dMN − 1)−1YYT , (10.35)

where ! is the covariance matrix, and Y is the dM × N data matrix P of sample
vectors zk,k = {1, . . . ,N}, minus the sample mean µ, and each vector zk consists of the
positional information from M particles on the shape surface k. In the case of computing
entropy of vector-valued functions of the correspondence positions, the extension to
functional data considers the more general case where columns of the data matrix are
instead given by

p̃k =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (xk
0)

f (xk
1)

...

f (xk
j )

...

f (xk
M−1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10.36)

where xk
j is the positional information of particle j for shape k, and f : ℜd → ℜq.

The matrix Y now becomes a matrix Ỹ of the function values at the particle points,
minus the means of those functions at the points. Columns of Ỹ are given by

ỹk =

⎡

⎢⎢⎢⎢⎣

f (xk
0) − 1

N
∑N

i=1 f (xi
0)

f (xk
1) − 1

N
∑N

i=1 f (xi
1)

...

f (xk
M−1) − 1

N
∑N

i=1 f (xi
M−1)

⎤

⎥⎥⎥⎥⎦
. (10.37)

The new cost function G̃ is the estimation of entropy of the samples ỹk. With the
same assumption of a Gaussian distribution in shape space, by the same logic as for the
derivation of the cost function G in (10.29), we have

G̃(z̃) = log
∣∣∣cỸT Ỹ,

∣∣∣ , (10.38)

with c a constant.
Let Q = (ỸT Ỹ + αI)−1. By the chain rule, the partial derivative of G̃ with respect

to the data yk becomes

− ∂G̃
∂P̃k

= JT
k Qk, (10.39)
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where Jk is the Jacobian of the functional data for shape k. The matrix Jk has the
structure of a block diagonal matrix with M × M blocks, with diagonal blocks the q × d
submatrices of the function gradients at particle j. Specifically, for each shape k, we have
function data

yk =
[
f 0
1 , f 0

2 , . . . , f 0
q , f 1

1 , f 1
2 , . . . , f 1

q , . . . , f M−1
1 , f M−1

2 , . . . , f M−1
q

]T
, (10.40)

and a diagonal submatrix block of the Jacobian Jk = ∇zkyk has the structure

⎡

⎢⎢⎢⎢⎣

∂ f j
1/∂xdj+1 ∂ f j

1/∂xdj+2 . . . ∂ f j
1/∂xdj+d

∂ f j
2/∂xdj+1 ∂ f j

2/∂xdj+2 . . . ∂ f j
2/∂xdj+d

...

∂ f j
q /∂xdj+1 ∂ f j

q /∂xdj+2 . . . ∂ f j
q /∂xdj+d

⎤

⎥⎥⎥⎥⎦
, (10.41)

where j = {0,1,2, . . . ,M − 1} is the block number, which corresponds to a single par-
ticle, and {x1,x2, . . . ,xdM } are the directional components of the full set of M particles.
The correspondence optimization proceeds by gradient descent, as described in Sec-
tion 10.2, with the substitution of the gradient of the new cost function G̃ for the
original cost function G in Eq. (10.32).

In summary, the generalized PBM algorithm replaces the entropy of positional infor-
mation with entropy of an arbitrary function of positional information. This modifica-
tion offers a much more generalized framework for optimizing the statistical properties
of an ensemble of shapes. Note that the standard PBM algorithm from Section 10.2 is
now just a special case of the generalized PBM algorithm, where f (z) = z.

10.3.4 Correspondence with Regression Against Explanatory Variables
In general, the design of a scientific study in biology or medicine cannot control for all
confounding variables. The variability in shape due to such factors as age, differential
growth rates, or clinical variables, for example, must be accounted for during the analy-
sis phase. In other cases, this variability is the specific focus of the study, and researchers
want to examine the correlation of an explanatory variable with shape. A typical exper-
iment, for example, might examine the correlation of disease progression with the shape
of anatomical structures or the change in the shape of anatomy with age. If such corre-
lations can be established, they may lead to new diagnostic protocols or interventional
planning.

This section extends the PBM algorithm to the problem of establishing correspon-
dence in the presence of confounding variables and examining the correlation of shape
with explanatory variables. Like in the previous section, this method allows for a more
general notion of correspondence that takes into account additional information about
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the data under study. The algorithm works by expanding the point-based correspon-
dence model from Section 10.2 to include a regression against the independent variables.
The optimization of correspondence position is then done on the residual to the regres-
sion model. Of course, the alternative is simply to use statistical methods in the analysis
of post-optimization PBM shape parameters. However, the motivation to instead op-
timize the parameters of the residual model itself is the same principle of parsimony
behind the basic PBM formulation: to further minimize model parameters and further
maximize statistical power.

Under the assumption of a Gaussian distribution for the random variable Z from
Eq. (10.33), which is the distribution of shape samples in shape space, we can write the
generative statistical model

z = µ + ϵ, ϵ ∼ N (0,!) (10.42)

for particle correspondence positions, where ϵ is normally-distributed error. Replacing
µ in this model with a function of an explanatory variable t gives the more general,
regression model

z = f (t) + ϵ̂, ϵ̂ ∼ N (0, !̂). (10.43)

The optimization described for the basic PBM algorithm minimizes the entropy
associated with ϵ, which is the difference from the mean. In this section, the goal
is to optimize correspondences under the regression model in Eq. (10.43) by instead
minimizing entropy associated with ϵ̂, the residual from the regression model. For the
simple case where particle correspondence is a linear function of t, given as f (t) = a+bt,
parameters a and b must be estimated to compute ϵ̂. These parameters are estimated
with a least-squares fit to the correspondence data,

arg min
a,b

E(a,b) = 1
2

∑

k

[
(a + btk) − zk

]T
!−1 [

(a + btk) − zk
]
. (10.44)

Setting δE
δa = δE

δb = 0 and solving for a and b, we have

a = 1
n

(∑

k

zk −
∑

k

btk
)

, (10.45)

and

b =
(

∑

k

tkzk −
∑

k

zk
∑

k

tk

)

/

(
∑

k

t2k − (
∑

tk)2

)

. (10.46)

The proposed regression model optimization algorithm proceeds as follows. Corre-
spondences are first optimized under the nonregression model (Eq. (10.42)) to minimize
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Figure 10.7 Shape regression on an explanatory variable t correlated with the small radius of a set of
tori with r ∼ U(5,20).

the entropy associated with the total error ϵ. This process also establishes an initial es-
timate for a and b. The next step is to optimize under the regression model, which
proceeds by gradient descent on H(Z) ≈ 1

2 log |"̂|+H(Pk). In other words, the method
follows the same optimization procedure as the basic PBM framework (Section 10.2),
but replaces the covariance of the model with the covariance of the underlying resid-
ual, relative to the generative model. The two estimation problems are interwoven: the
parameters a and b are re-estimated after each iteration of the gradient descent on the
particle positions.

As an example of a correspondence optimization, consider the regression method
applied to a set of N = 40 tori. To generate each torus, the large radius R was randomly
drawn from a Gaussian distribution R ∼ N (35,3), and small radius r randomly drawn
from a uniform distribution r ∼ U(5,20). An explanatory variable ti = ri + ϵ, with ϵ ∼
N (0, .3), was assigned to each shape sample i ∈ {1, . . . ,40} to establish a good correlation
with variation in the small torus radius. Correspondences were optimized using 1024
particles per shape and the PBM regression algorithm outlined above. In the resulting
correspondences, variation in the residuals to the regression line exhibits one major
mode that empirically corresponds to r. Empirical observation of the regression line,
which is shown in Fig. 10.7 suggests good correlation with R.

10.3.5 Dense PBM Correspondence Models
PBM yields relatively sparse correspondence models that may be inadequate to recon-
struct thin structures and high curvature regions of the underlying anatomical surfaces.
However, for many applications, we require a denser correspondence model, for exam-
ple, to construct better surface meshes, make more detailed measurements, or conduct
biomechanical or other simulations on mesh surfaces. One option for denser modeling
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Figure 10.8 ShapeWorksView: pelvis surface reconstruction as a function of the number of particles.

is to increase the complexity of the PBM model via increasing its number of particles
per shape sample. However, this approach necessarily increases the computational over-
head, especially when modeling large clinical cohorts. Fig. 10.8 shows a pelvis surface
reconstruction with an increased number of particles in which poor reconstructions are
observed with smaller number of particles, especially along the pubic arch and iliac crest.
Hence, an extension is needed to recover anatomically plausible and accurate 3D shapes
at both the population and sample levels from a sparse set of particles.

In this extension, we adopt a template-deformation approach to establish an inter-
sample dense surface correspondence, given a sparse set of optimized particles. To avoid
introducing bias due to the template choice, we propose an unbiased framework for
template mesh construction that includes three steps. First, generalized Procrustes align-
ment [72] is used to define the mean particle system from the PBM model, while
estimating the rigid transformation that maps the sample-level particle system to the
population-level counterpart. Second, the distance transform (DT) of each shape is de-
formed based on a nonlinear warping function that is built using the sample’s particle
system and the mean particle system as control points. Third, the warped DTs are then
averaged to compute an average DT whose zero level set represents the geometry and
topology of the mean shape in the population space. The dense template mesh is then
constructed by triangulating the isosurface of this mean DT. This unbiased strategy will
preserve the topology of the desired anatomy by taking into account the shape popula-
tion of interest. In order to recover a sample-specific surface mesh, a warping function is
constructed using the sample-level particle system and the mean/template particle sys-
tem as control points. This warping function is then used to deform the template dense
mesh to the sample space. A core ingredient of this PBM-based surface reconstruction
is the form of the warping function being guided by the sparse particle system. One
option is to use a thin-plate spline (TPS) [73] that defines a spatial mapping with global
support, i.e., any perturbation in a single correspondence affects the whole warping
function. Fig. 10.9 shows a sample PBM-based pelvis surface reconstruction using TPS
with 512 particles. Compared to the current ShapeWorksView, our proposed recon-
struction is able to recover the pubic arc and iliac crest with few particles. Nonetheless,
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Figure 10.9 Surface reconstruction of a pelvis mean shape with 512 particles using (A) Shape-
WorksView and (B) the proposed warping-based reconstruction (with thin plate splines).

Figure 10.10 TPS vs. RBF: histogram of vertex-wise average distance (in mm) between original patient-
specific femur meshes and the warped template femur mesh.

TPS poses timing and memory challenges to process PBM models with more particles.
To speed up the reconstruction process while minimizing the memory footprint, we
propose the use of compactly supported radial basis functions (RBF) [74], which results
in a sparse matrix that can be solved using sparse solvers. For preliminary results, we used
a cohort of 70 femur shapes with 0.7 mm resolution. The computation time for tem-
plate mesh construction was reduced from 4 hours using TPS to 9 minutes using RBF.
Sequentially deforming the template mesh to the space of each subject was reduced
from 4.5 hours using TPS to 5 minutes using RBF. To ensure that we are not sacri-
ficing accuracy for this speed-up, Fig. 10.10 shows histograms of the warping error (in
mm) between the groundtruth and reconstructed patients meshes in which both TPS
and RBF attain similar trends and the majority of error is less than a seventh of voxel
size. With a femur cohort at a resolution of 0.24 mm, Fig. 10.11 shows the RBF-based
warping error being quantified at different numbers of particles where less than half voxel
size warping error is achieved with 1K particles or more. This PBM-based warping can
be further used to deform clinical measurements from patient to population space and
vice versa [63].
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Figure 10.11 Mean and standard deviation of RBF-based warping error in mm as a function of number
of particles. Vertex-wise mean error along all the 70 femur shapes was computed and visualized as
colormaps on the template dense mesh.

10.4 SHAPEWORKS SOFTWARE IMPLEMENTATION AND WORKFLOW

ShapeWorks is an open-source software distribution of the PBM approach to SSM.
The software includes a careful numerical implementation of the approaches developed
in Sections 10.2–10.3 in a modular C++ library. ShapeWorks also includes a suite of
software applications for applying PBM to image segmentations. The software distri-
bution consists of a set of command line tools for preprocessing binary segmentations
(ShapeWorksGroom) and computing landmark-based shape models (ShapeWorksRun).
It also includes a simple user interface to analyze and visualize the optimized shape
models (ShapeWorksView). The current shape modeling pipeline for establishing shape
correspondences from a set of binary segmentation image volumes is outlined in
Fig. 10.12, with reference to the software tools that implement each step. In addi-
tion to the command line tools and visualization software, ShapeWorks also includes
a full graphical user interface called ShapeWorksStudio, which can be used to interac-
tively run all of the steps in the shape modeling pipeline. All ShapeWorks source code,
binaries, and user documentation are freely available from the ShapeWorks website
(www.sci.utah.edu/software/shapeworks.html) under the MIT license that is General
Public License (GPL) compatible. According to Google Scholar, ShapeWork technol-
ogy has received over 260 citations and over 2500 downloads since its initial release in
2009.

The remainder of this section describes each of the elements of the ShapeWorks soft-
ware implementation in more detail, including the PBM code framework, an overview
of the steps in the ShapeWorks SSM workflow, and an introduction to the ShapeWorks
software applications.

10.4.1 The ShapeWorks Shape Modeling Workflow
A typical workflow for establishing shape correspondence from binary image volume
inputs is outlined in Fig. 10.12. The preprocessing steps in the pipeline establish an
initial alignment of the segmentations and generate suitable distance transforms. The

http://www.sci.utah.edu/software/shapeworks.html
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Figure 10.12 ShapeWorks shape modeling pipeline.

optimization phase consists of initializing the particle system, running the PBM op-
timization, and optionally refining the alignment using the Procrustes algorithm to
iteratively remove residual nonshape data. Iterations of the correspondence optimization
are interleaved with alignment steps until convergence. The remainder of this section
discusses each of these steps in more detail.

10.4.1.1 Segmentation Preprocessing and Alignment
Any set of implicitly defined surfaces, such as a set of binary segmentations, is appro-
priate as input to the PBM algorithm. The algorithm, however, can be applied directly
to binary segmentation volumes, which are often the output of a manual or automated
segmentation process. Binary volumes contain an implicit shape surface at the inter-
face of the labeled pixels and the background. Any suitably accurate distance transform
from that interface may be used to form the implicit surface necessary for the particle
optimization.

Segmentation data typically requires some processing to remove aliasing artifacts
in the binary mask. Aliasing artifacts can adversely affect numerical approximations of
surface features and the computations required to maintain the surface constraint in
the PBM algorithm. One effective method for antialiasing binary volumes is given by
Whitaker in [75], who describes a method for fitting an antialiased, level-set surface
to a binary volume through an iterative relaxation process. The process uses curvature
flow of the surface, with constraints on the flow dictated by the binary voxel locations
of the segmentation. Another effective antialiasing method is the r-tightening algo-
rithm given by Williams et al. [76]. The surface tightening method follows a similar
approach to that of Whitaker, but constrains the level-set relaxation process using bi-
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nary volumes that result from morphological opening and closing of the targeted binary
surface. This method has proven to be particularly effective at removing aliasing artifacts
without compromising the precision of the segmentation. As a final preprocessing step,
the distance transform is typically followed by a slight Gaussian blurring to remove the
high-frequency artifacts that can occur as a result of numerical approximations.

A collection of shape segmentations must often be aligned in a common coordinate
frame for modeling and analysis. Where no information exists to specify a correct align-
ment, one approach is to first align segmentations with respect to their centers of mass
and the orientation of their first principal eigenvectors. Then, during the optimization,
the PBM method may optionally further align shapes with respect to rotation, transla-
tion, and scale using generalized Procrustes analysis (GPA) [77]. The GPA alignment is
applied at regular intervals after particle updates in order to remove any residual, non-
shape information from the model. GPA alignment during the optimization process is
only enabled once the full set of M particles have been initialized on all surfaces. Where
the true shape alignments are known, however, the GPA iterations may be omitted.
A subset of the GPA alignment parameters may also be applied, such as only the rota-
tional and translational components, leaving the scale unaffected.

10.4.1.2 Initialization and Optimization
There are number of possibilities for initializing the particle systems on the sample
shapes, including manual specification of points and regular surface sampling. For spher-
ical topologies, Paniagua et al. have proposed initialization of PBM with parametric
SPHARM-PDM models [10]. One effective approach for general categories of shape,
however, is to use an iterative, particle splitting strategy, in which the full set of particles is
initialized in a multiscale fashion as follows. First, the PBM system is initialized with a
single particle on each shape that finds the nearest zero of the implicit surface. This sin-
gle particle is then split to produce a new, nearby particle. The two-particle (per shape)
system is then optimized for correspondence until a steady state is reached. The splitting
process, followed by optimization, is then repeated until a specific number of particles
have been produced. Thus, the initialization proceeds simultaneously with the opti-
mization in a multiscale fashion, generating progressively more detailed correspondence
models with each split.

Typically, we set the numerical parameters for the PBM optimization automatically
as follows. The numerical parameter σmin is set to machine precision and σmax is set to
the size of the domain. The annealing parameter α starts with a value roughly equal
to the diameter of an average shape and is reduced to machine precision over several
hundred iterations. Particles are initialized on each shape using the splitting procedure
described above. These default settings have been found to produce reliably good results
that are very robust to the initialization, although some degree of parameter tuning is
typically warranted in practice.
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Processing time for the PBM algorithm on a modern desktop computer averages
around 1/16,000 second/particle per iteration. This translates to full optimization times
that scale linearly with the number of particles in the system and are on the order of
minutes for small systems of a few thousand particles to several hours for larger systems
of tens-of-thousands of particles. Optimizations of very large systems of hundreds-of-
thousands to millions of particles may take processing times of several dozen hours.

10.4.1.3 Analysis

For analysis, sets of configurations are usually aligned within a common d-dimensional
coordinate frame by a rotation, translation, and scaling to remove the geometric infor-
mation unrelated to shape variation. Goodall’s model of shape [77,78] describes each of
these nonshape components and the residual variation around the mean correspondence
configuration. For configuration matrix Ci, the model is given by

Ci = aiµ + EiRi + 1ti, (10.47)

where ai is a scalar representing the relative size of specimen i relative to the mean size,
Ei are the residuals from the mean configuration µ, Ri is a rotation matrix describing
the orientation of sample i, 1 is a d-dimensional vector of 1s, and ti is a translation
vector describing the locational information for sample i.

The most common method for estimating µ, and the nonshape components Ri,
ti, and ai is generalized Procrustes analysis (GPA) [7,72,79,5]. When transformed using
GPA, correspondences are said to be in Procrustes space. Statistical analysis is commonly
done in Procrustes space because, for reasonably similar sets of shapes, distance measures
between Procrustes coordinates have been shown to be good linear approximations to
the geodesic distances in Kendall’s shape space [5,6].

The remaining geometric variability of a correspondence model after GPA is often
summarized as a set of shape parameters that are the orthogonal directions of a prin-
cipal components analysis (PCA) of the correspondence point positions. A complete
mathematical description of this process can be found in, for example, [77,80], with
application to PBM in [81]. PCA-based shape parameters allow us to compress the very
large amount of geometric information into a much smaller representation of shape
that is suitable for traditional statistics, while still retaining most of the geometric infor-
mation of the shapes. Typically, we choose a finite number of shape parameters m for
analysis either empirically, or by picking a set that accounts for most of the variability
in the model. A more objective approach for PCA model selection is to use a method
called parallel analysis to automatically determine a finite set of PCA modes that are
distinguishable from Gaussian noise in the model [82].
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Figure 10.13 Abstract implementation of PBM shape modeling.

10.4.2 The PBM Code Library
A numerical implementation of the PBM algorithms from Sections 10.2–10.3 is avail-
able as an open source library of C++ code (github.com/joshcates/ITKParticleShape
Modeling). This library is part of the ShapeWorks distribution and is used in all Shape-
Works applications. The PBM code library is built using the Insight Toolkit (ITK,
www.itk.org) and can be easily compiled with ITK as an external module. The PBM
codebase also conforms to ITK coding standards and includes Doxygen-based docu-
mentation (www.doxygen.org) and unit regression tests for all C++ classes. The PBM
code library is templated on dimensionality, so that the methods operate equally for
two- and three-dimensional image segmentation data.

Fig. 10.13 depicts an abstract view of the main code modules in the PBM library
and how they are combined to implement a software application for shape analysis,
including the data flow among these components. With reference to Fig. 10.13, the
PBM library includes ITK filters for preprocessing image segmentations and converting
them to suitable distance transform inputs (see Section 10.4.1.1). Distance transforms
are input into a PBM Shape Modeling Filter object, which manages the construction
of the multiple Particle Systems and executes the optimization process using a suitable
Optimizer and Energy Metric. The main output of the Shape Modeling Filter is the set
of correspondence point positions for all N input shapes. The Particle System data con-
tainer is central to the processing. It is implemented as a facade class [83] that stores and
manipulates all of the point-based representations of the input implicit shape surfaces,
their local coordinate domains, and the mappings between those domains. The Particle
System class, along with most other objects that maintain state in the PBM framework,
can make use of ITK’s command/observer framework to allow state changes to trigger
attached processes at the application level. For example, visualization code can be writ-
ten to listen for particle position changes that are broadcast from the Particle System
object and then trigger graphical updates in response.

http://github.com/joshcates/ITKParticleShapeModeling
http://github.com/joshcates/ITKParticleShapeModeling
http://www.itk.org
http://www.doxygen.org
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Figure 10.14 Concrete implementation of PBM shape modeling.

Fig. 10.14 shows the specific instantiation of the abstract framework from Fig. 10.13
that implements a basic PBM correspondence optimization. The generic class types
have been replaced with specific instantiations in each box. Alternative PBM model-
ing approaches can be implemented by substituting alternative implementations of the
various modular components in this figure. For example, the PBM regression opti-
mization described in Section 10.3.4 can be implemented by simply substituting the
“RegressionShapeMatrixAttribute” for the more general “ShapeMatrixAttribute” class
in Fig. 10.14. For more details on the PBM code library and its use, the reader is referred
to the documentation included with the ShapeWorks distribution.

10.4.3 The ShapeWorks Software Tool Suite
With reference to Fig. 10.12, the ShapeWorks software suite includes the following
applications, which collectively implement the complete workflow described in Sec-
tion 10.4.1. ShapeWorksGroom is a command line tool for batch processing binary
segmentations, as described in Section 10.4.1.1. It can be used to perform simple
alignment of segmentations, basic quality control, and to generate appropriate distance
transform inputs for the PBM optimization. ShapeWorksRun implements the PBM
correspondence optimization algorithm described in Section 10.2, including multiscale
initialization via particle splitting and iterative GPA (Section 10.4.1.2). ShapeWorksRun
also includes the extensions to PBM described in Sections 10.3.1–10.3.4. Shape-
WorksView is an application for visualizing the results of the PBM optimization. It
is built using the open-source Visualization Toolkit (VTK, www.vtk.org) and includes
visualization of correspondence positions on shape surfaces, reconstructions of the mean
shape of the correspondence model, and reconstructions of shapes along PCA modes
(Section 10.4.1.3) and regression lines (Section 10.3.4).

ShapeWorks Studio is a new desktop application that encapsulates the entire pro-
cessing pipeline from Fig. 10.12 under a single user interface. The different steps of the

http://www.vtk.org
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Figure 10.15 The ShapeWorks Studio desktop application.

pipeline are organized under separate tabs, as shown in Fig. 10.15. ShapeWorks Stu-
dio also includes postprocessing to produce dense correspondence models, as described
in Section 10.3.5. ShapeWorks Studio is built using the PBM C++ library, ITK, Qt
(www.qt.io) for graphical user interface elements, and VTK for visualization compo-
nents. The design of the software and its dataflow are shown in Fig. 10.14.

10.5 SHAPEWORKS IN BIOMEDICAL APPLICATIONS
ShapeWorks has been applied to a wide variety of problems in medicine and biology,
including neurobiology, biological phenotyping, orthopedics, and cardiology. In this
section, we review some of the applications in these areas.

The PBM algorithm and many of its extensions were originally developed in the
context of neurobiology. The method of modeling ensembles of shape complexes (Sec-
tion 10.3.2), for example, was developed with application to a study of the shape of
subcortical brain structures in pediatric autism. In that study, we identified statisti-
cally significant differences between the joint mean shape of 10 subcortical structures
in autism patients and those of normal controls [60]. The PBM regression model-
ing approach outlined in Section 10.3.4 was used to describe a longitudinal model
for neonatal head shape development [58]. Oguz et al. have applied the generalized
method of PBM correspondence (Section 10.3.3) for human cortical surface corre-
spondence [56,57], and have shown improved correspondence with respect to cortical
thickness and sulcal depth over more commonly used approaches such as FreeSurfer
(http://www.freesurfer.net).

Gene targeting is one of the most important tools for genetic study, and is widely
used to examine the role that specific genes play in human development and disease.

http://www.qt.io
http://www.freesurfer.net
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Because gene targeting studies often rely on metrics of shape to quantify phenotypic
expression, more comprehensive and detailed representations of shape from SSM al-
low for observations of genetic expression that have not been possible with traditional
morphometrics. We applied ShapeWorks to quantify phenotype of the forepaw in mice
deficient in the Hoxd11 gene and compare to normal control mice. Hoxd11 is known
to play a role in the normal patterning of the appendicular skeleton. Our results showed
both significant gross shape changes associated with bone length and thickness, but also
more subtle local shape abnormalities at the distal end of the bones [60].

In orthopedics, ShapeWorks has been applied to the quantification of the spectrum
of hip deformities associated with cam-type femoroacetabular impingement (FAI). We
have analyzed variation in the thickness of the femur cortex between asymptomatic
controls and cam-FAI patients, for whom we had quantitative evidence that repet-
itive impingement would induce bone hypertrophy [62,84,63]. We have further used
ShapeWorks to study the resection of the lesion in cam-FAI patients to reduce the likeli-
hood of damage to chondrolabral tissue and have developed guidelines to assist surgeons
with resection of cam lesions as an effective intraoperative guide [85]. We established
the limitations of radiographic measurements used in the clinical diagnosis of cam-FAI
for which shape modeling greatly promise in deriving measurements to best describe
cam-FAI deformities [86]. ShapeWorks has further helped in developing cost-effective
patient-specific finite element (FE) models (which require hundreds of man-hours oth-
erwise) of the cartilage and labrum to advance our understanding of contact mechanics
and the pathogenesis of osteoarthritis [87].

In cardiology, ShapeWorks has been applied to study the maladaptive remodeling of
the left atrium (LA) and clinical outcomes in atrial fibrillation (AF). PBM is uniquely
suited for modeling the LA (and other heart structures) because its particle-system for-
mulation can accommodate holes in a surface, such as the mitral valve openings and
pulmonary vein openings. LA shape and size changes have previously been associated
with AF progression and decreased response to catheter ablation, a first-line therapy for
symptomatic drug refractory AF [88–91]. Using ShapeWorks models of the LA, we de-
scribed the statistically significant differences in LA shape in populations with increasing
severity of the disease [64]. In that same study, we also identified characteristic shape
changes of the left-atrial appendage that are associated with an increased likelihood of
thrombus, a major risk factor for cardioembolic stroke. These results suggest the possi-
bility of a shape-based clinical measure for stroke risk, as well as other AF outcomes. In
another study, we applied the PBM correspondence models in the LA to develop a pop-
ulation atlas of the distribution of fibrosis in AF sufferers [65]. Fibrosis is a well-known
degradation of the tissue structure in AF that can be measured using late-gadolinium
enhancement MRI [92].
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10.6 CONCLUSIONS AND FUTURE WORK

Statistical shape modeling (SSM) represents a revolutionary new approach to morphom-
etry, but the widespread adoption of these new tools will require careful engineering
to make them accessible to the average user and applicable to a wide variety of bi-
ological shapes. ShapeWorks is an implementation of Particle Based Modeling (PBM),
which is designed to be a general tool for SSM. By modeling surfaces nonparametrically
as collections of dynamic particle systems, ShapeWorks is not limited to any particular
topology and can even represent shapes with multiple disconnected surfaces and surfaces
with arbitrary open boundaries. The particle system approach also avoids the algorith-
mic complexity and parameter tuning associated with constructing parameterizations.

The ShapeWorks software suite implements a general SSM workflow that supports
interactive processing on smaller datasets and offline processing of very large cohorts.
ShapeWorks also includes preprocessing and analysis tools and, for many applications,
can be a complete end-to-end SSM solution. The PBM C++ code library represents
a careful numerical implementation of the particle system framework, and is extensible
and reusable in any application supporting ITK. The ShapeWorks approach has been
used successfully for investigation in many areas of biomedical investigation, including
neurobiology, genetic phenotyping, orthopedics, and cardiology.

Despite proven success for many biomedical applications, the rapid advances and
growing use of medical imaging technologies, and the associated need to model more
complex morphological variations, require significant functionality and usability im-
provements of all modern SSM approaches, including ShapeWorks. In order to meet
today’s real-world shape modeling problems from a diverse biomedical community, we
are developing new algorithmic extensions and new software versions. For example,
motivated by studies of the highly variable anatomy of the atria of the heart, we are
expanding our PBM approach to allow mixtures of Gaussians, in order to find natural
clusterings of shapes in the populations and better discrimination when seeking shape-
based indicators of treatment outcome. To support ever increasing cohort sizes and
reduce ShapeWorks’ run-times and memory requirements, we are developing parallel
versions of the PBM optimization and modifying our algorithms to operate directly on
mesh-based representations of surfaces. Finally, more comprehensive user interfaces for
our software and domain-specific customizations of the PBM workflows are in progress,
in order to make the PBM approach more accessible to the larger morphometrics com-
munity.
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